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It is shown that regression, optimal policy, and boundary value problems involving 
differential equations are mathematically equivalent and that the latter two are beat 
solved numerically as regression problems by means of transformations. This technique 
results in a more efficient calculational procedure than is currently available. A statistical 
analysis is also presented which serves as a tool in deciding the appropriateness of a 
proposed model. 

Three problems that are commonly encountered in engineering analysis are 
regression, optimal policy, and boundary value problems involving differential 
equations. In regression problems, the values of parameters in a set of differential 
equations are to be estimated from experimental data. In optimal policy problems, 
a given quantity is to be optimized by determining the control variables where this 
quantity also depends on variables defined by a set of differential equations. In 
boundary value problems, a set of differential equations is to be solved subject 
to specification of the dependent variables at various values of the independent 
variable. In general, the solution of these problems requires numerical techniques. 
In this paper, it is shown that these three problems are mathematically equivalent 
and that the latter two can be formulated as a regression problem which can be 
solved by a more efficient numerical technique than is currently used. A statistical 
analysis is also presented which aids in deciding whether a given set of differential 
equations and its parameters constitute an appropriate model with respect to the 
data. 

FORMULATION OF THE REGRESSION PROBLEM 

It is assumed that the physical system is described by a set of first-order nonlinear 
ordinary differential equations of the form 

2 = fi( Y, , Y. ,..., Yjv , k, , k, ,..., kM , T), i=l 7 , I,..., N, (1) 
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subject to the initial conditions 

ym = yoi 3 i = 1, 2 ,..., N, (2) 

where Y, , Y, ,..., Y, = the dependent variables; r = the independent variable; 
fi , fi ,..., fN = arbitrary functions, k, , k, ,..., kw = parameters characteristic of 
the system. 

Since an &h-order differential equation can be reduced to a system of n first-order 
equations, this formulation is completely general. 

The problem is to estimate the values of the parameters k, , k, ,..., kM from data 
on the system which give the values of Y, , Y, ,..., Y, at various values of 
T(TI , 72 )..., 3-j )..., T~J when the set of differential equations and initial conditions 
are known. The criterion for selecting the values of these parameters is that the 
weighted sum of the square of the difference between the data values, YaD(7&, 
and the corresponding computed values, Yi(Tj), 

S2 = y E Wij[Yi’(Tj) - Yi(k, 9 k2 )a.., kw, 7i)12, 
j-1 i=l 

(3) 

is a minimum. wii is the weighting factor associated with the data point YiD(~j) 
and is usually taken as the reciprocal of the variance of that point. 

A necessary condition for S2 to be a minimum is that its derivatives with respect 
to k, , k, ,..., kw are all zero, which requires 

The term aY,/ak, may be evaluated by noting that 

which upon integration with respect to r gives 

or since (aYi/akl)l,,, = 0, 

(5) 

aYi(k, , k, , . . . . kw , 4 = 
ah f 

Tj %(Y, , Y, ,..., Y, , k, , k, ,..., kw , T) 
ak, 

d7 
. (6) 

0 

581/1S/3-7 



328 WNEK AND HAAS 

This eliminates the need to integrate the differential equations with each parameter 
slightly perturbed in turn in order to calculate these derivatives as done by other 
investigators [I]. This result has also been noted by Snow [15] and Eakman [4]. 
It should be pointed out that ;tf/akl is defined as 

(7) 

so that according to Eq. (5) the afJak,‘s are given by a set of ordinary differential 
equations which could be solved along with Eq. (1); however, as indicated by 
Eakman [4], the summation term represents second-order effects. Since very 
accurate values of af;,/ak, are not required in the iteration scheme, the summation 
term may be neglected, and Eq. (6) integrated by a simple technique such as Euler’s 
method. 

If the set of differential equations could be integrated analytically, the expressions 
for the Yi’s could be substituted into Eq. (4) to give rise to M nonlinear algebraic 
equations to be solved for the parameters k, , k, ,..., k,, . This would then be a 
standard problem in regression analysis; however, such solutions are generally 
not available so that the solution of the differential equations must be obtained 
numerically. This means that a solution for arbitrary values of the parameters 
cannot be obtained, but only for specific values. Therefore, a procedure is needed 
which can generate improved values of the parameters from information obtained 
for an incorrect set of values. 

This can be accomplished as follows. The dependent variables Yi are approxi- 
mated by a Taylor series expansion about the incorrect set k,*, k,*,..., kn,* with 
only terms no higher than first order retained [2]. 

Ydk, > k, ,..., kw, 7) 

w Yi(klo, k,* ,..., kMo, T) = ‘f (kh - kho) 
aYi(klo, k,O ,..., kM*, T) 

akh 
. (8) 

h=l 

Substituting Eq. (8) into Eq. (4) for Yi(k, , k, ,..., khf , TJ gives 

as2 
_ M -2 “c” $ wii [ Y,“(rJ - Yi(k,*, k,O,..., kMo, TV) 
ah j=l i=l 

_ E (kh _ kh,,) a yi('h*, kz',..., kw', Tj) ] 
h=l akh 

a Yi(kl*, kz* ,..., kM”, q) = 
akl 

o 
3 I = 1) 2 )..., M, (9) 
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where 

a Y&lo, ho,. . ., k,wO, Tj) = 
s 

‘j 
ah 

%!f;:(Yl , Y2 ,. . ., YN , ho, ho,. . ., kM”, 4 dT 
0 akl 

Rewriting Eq. (9) as 

1 = 1, 2 ,..., M, (10) 

where 

aYi(klo, k,O ,..., klm”, Tj> i as2 . -- 
ah = - 2 ak, p ? 

. aYi(klo, k20 ,..., ku”, Tj) 

akl 
, 

Ak, = kh - kho, 

one sees that a set of M linear algebraic equations in unknowns k, , k, ,..., k&, is 
obtained. Thus, the solution of Eq. (10) allows improved values of the parameters 
to be determined from calculations based on an incorrect set of values. Because 
of the first-order expansion assumption, the first correction based on an initial 
guess of the parameters in general will not be sufficiently accurate that several 
iterations of this type will be required where the improved set is in turn treated 
as the incorrect set in order to generate a better set. This method is known as the 
Newton-Raphson technique. 

One disadvantage of this method is that while it converges quite rapidly in the 
vicinity of the correct set of values, it converges slowly and even diverges otherwise. 
In order to circumvent this problem, a grid or gradient search method which 
converges rapidly from afar, but not in the immediate neighborhood of the solution, 
can be used in conjunction with the Newton-Raphson method. An excellent 
algorithm which combines the best features of the gradient search and Newton- 
Raphson methods has been given by Marquardt [13, 21. It consists of modifying 
Eq. 10 to read 

/A= E & Ah, I = 1, 2,. .., M, (11) 
h=l 
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where 
for k = I, 
for R # 1. 

For very small values of h, Eq. (11) is identical with the Newton-Raphson method; 
on the other hand, for very large values the 01 II terms are dominate so that the 
uncoupled equations 

are obtained. Thus, as in the gradient search, steps are taken in the direction of the 
gradient of S2 with respect to the parameters since /3 is proportional to cYS2/ak. 
That convergence is assured by this algorithm is shown as follows. A small initial 
value of X such as 0.001 is selected. If the improved set of parameters increases S2, 
this means that the Newton-Raphson method diverged because one is far from 
the correct solution. As a result, X is increased (for example, by a factor of 10) 
in order to weight the gradient method more heavily. If S2 decreases, this means 
that the solution is being approached, so that X is decreased (for example, by a 
factor of 10) in order to weight the Newton-Raphson method more heavily. Thus, 
in this way, convergence can be assured. 

CONVERSION OF A BOUNDARY VALUE PROBLEM INTO A REGRESSION PROBLEM 

Consider the boundary value problem as defined by the set of ordinary differential 
equations 

2 = @I , ZZ ,a*-, ZN, T), i = 1, 2 ,..., N, (13) 

subject to the boundary conditions that the value of zi is specified at r = 7i , 

Zi(Ti) = zoi 7 i = 1, 2 ,..., N, (14) 

where zi is the ith dependent variable. 
This problem can also be formulated as Eq. (13) subject to the unknown initial 

conditions at T = 0, 

z~(O) = ki 3 i = 1, 2 ,..., N, (15) 

where the ki’s must take on values such that the boundary conditions given by 
Eq. (14) are satisfied. This type of problem has been solved previously by guessing 
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values for the k;s and integrating the resulting initial value problem numerically, 
after which the calculated values of the zi’s at 7i are compared with the specified 
ones in order to correct the initial guess [12, 5,9]. The Newton-Raphson method is 
used to obtain this correction which necessitates the system to be integrated 
N times with each ki slightly perturbed in turn in order to obtain the ay,/akls 
at each Ti . Such a procedure can be quite time consuming and is needlessly ineffi- 
cient as will be now shown. 

The boundary value problem can be converted to the regression problem, which 
can be solved very efficiently by means of the change of variables 

Yi = (Zi - ki)/(z,i - ki) or Zi = ki + (Zgi - ki) Yi 3 

If a 7i is zero, Yi is not transformed. 
This transforms Eqs. (13) and (14) into the system 

dYi - 
dr (zoi~ki)f’(yl, Y2,..., YN,kl,k2,...,k~,4, i 

subject to the initial conditions 

Y,(O) = 0, i = 1, 2 ,..., N, 

where the kis are to be selected such that 

Y,(Ti) = 1, i = 1, 2 ,..., N. 

i = 1, 2 ,..., N. 
(16) 

1, 2,..., N, (17) 

(1% 

Comparing Eqs. (17)-(19) with Eqs. (1) and (2) for the regression problem, 
one sees that they are equivalent by interpreting Eq. (19) as specifying the data to 
be fitted. Since the regression problem calculates aY,/aY,‘s during the numerical 
integration, it is not necessary to repeat the integration several times with slightly 
perturbed values of the ki’s. Thus, the boundary value problem can be solved more 
efficiently than is currently done by converting it to a regression problem. 

The authors have applied this calculational technique to the adiabatic fixed-bed 
reactor problem [9]. Consider that the chemical reaction 2A --f B is occurring in 
an adiabatic fixed-bed reactor. The differential equations which result from a 
material and energy balance for steady-state using Lee’s [9] nomenclature are 

1 d2x dx ---- 
A4 dt2 dt 

= /3x2 exp [- +], 

1 d2T dT El ----= 
A4 dt2 dt 

-Qj3x2exp -T, [ 1 
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subject to the boundary conditions 

MY 
e 

= x(()) - 1 dx(o) 

A4 dt ’ 

WA o y$-= 3 

T, = T(0) - & 9 , 
(21) 

dT(f,) o -- = 

dt ’ 

where x = concentration, T = temperature, t = dimensionless reactor length 
variable with respect to diameter of packing particle, t, = length of reactor, 
M = Peclet number, IZI = activation energy group, /3 = reaction rate group, 
Q = heat of reaction group, and e = the condition of the reactant before entering 
the reactor. 

Equations (20) and (21) can be put into the form of Eqs. (13) and (14) by means 
of the transformations 

1 dx 
zl=x--Mdt’ 

z -T-k!?- 
3- h4 dt ’ 

with the result 

dz,- 
dt - -8b + z212 exp [ - z3 “; z4 1, 

dz, I d2x dx dz, 6 ---= 
dt - ?ii? -iii = dt dt Mzz-77 

(22) 

(23) 
dz 2 = QP(=, + z2J2 exp [ - z3 2 =, ]¶ 

dz,- * + Mz,, 
dt - - dt 



REGRESSION, OPTIMAL POLICY, AND BVP 333 

subject to 
z,(O) = xc? 3 

do) = T, , 

Z&f) = 0, 
(24) 

Z&f) = 0. 

It is known that the integration of Eqs. (20) and (21) leads to an inherent 
instability [3]. This can be explained by noting that if the transformation according 
to Eq. (16) were carried out, dY,/dt and dYddt in Eq. (17) would be inversely 
proportional to dx(O)/dt and dT(O)/dt, respectively, which are extremely small. 
It was found that this problem could be overcome by integrating backward. Thus, 
let 7 = t - tf so that Eq. (23) is only changed by the replacement of t by T and 
Eq. (24) becomes 

z,(--tf) = xe 9 
d--b) = Te , 

z‘m = 0, 
(25) 

z,(O) = 0. 

Introducing the values of x and Tat the end of the reactor 

z,(O) = k 9 
zdo) = k, , 

and making the change of variables according to Eq. (16) transforms the system to 

dY, - = &$ [be - kd r, + k, + zz12 exP [(T, _ k,) ;:+ k, + .j~ dr 

& dY, -=Mz,-(x,-kk37T;-, dr 

dy, 
- = & [(xe - k,) r, + k, + %I” exP [ cTe _ k2) ;F+ k, + .,I, dr 

4 -= 
dr 

Mz, - (T, - k,) $, 

subject to the initial conditions 

(26) 

Y,(O) = 0, 
ZP(O) = 0, 
Y,(O) = 0, 
40) = 0, 
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and the data to be fitted, 

where 

Y,(-&I = 1, 
U--r,) = 1, 

y, = (z1 - M/c% - k), 
y2 = hi - k2MTe. - k,). 

It should be noted that the original variables x and T are recovered according to 

x = z1 + zg = (x, - k,) Y, + k, + z2 , 

T = z3 + z4 = (T, - k,) Y, + k, + zq . 
(27) 

Also, it is seen from Eq. (26) that since k, and k, are the concentration and tem- 
perature at the end of the reactor, no stability problem is encountered as before 
because dY,/dr and dY,/dT are inversely proportional to (x, - k,) and (T, - k2), 
respectively. 

The numerical example given by Lee [9] was worked out by this procedure. No 
stability or convergence problems were encountered, and the results were in 
agreement with those of Lee [9], who used a quasilinearization technique; however, 
as Gidaspow [6] has pointed out, the condition of zero concentration and tem- 
perature gradient at the end of the reactor was not satisfied by Lee’s solution. The 
present method forces this condition to be satisfied. 

The authors have also applied this technique to the solution of problems in 
laminar boundary layer theory. By means of similarity transformations, the 
governing set of partial differential equations can be reduced to a boundary 
value problem formulation [IO, 51. Infinity is represented by a finite value of the 
independent variable such that a larger value does not change the solution. 

CONVERSION OF AN OPTIMUM POLICY PROBLEM INTO A REGRESSION PROBLEM 

The object of an optimum policy problem is to maximize or minimize some 
quantity y which is defined in terms of an integral over the domain 0 < 1 < L as 

Y = loL YMO, x,UL..., XNU), TdO, T,(O,..., T&l dl (28) 

by appropriately selecting the control variables ri(f) where the xis are variables 
specified according to the set of differential equations 

$ = fit-q , x-2 ,..., XN , Tl , T, ,..., T,), i = 1, 2,. .., N, (29) 
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subject to the boundary conditions 

Xi(O) = xoi , i = 1,2 ,..., p, 

XiW) = xoi 9 i = p + 1,p + 2 ,..., N. 

The set of conditions that the T,‘s must satisfy for an optimum are obtained from 
the Euler-LaGrange equations [14]: 

subject to 

and 

hi(L) = 0, i = 1, 2 )...) p, 

Xi(O) = 0, i = p + 1, p + 2 ,..., N, 

-g+~,&o, j = 1) 2,.. ., M. 
3 i=l * 

Equations (29) and (30) constitute a boundary value problem with Eq. (31) 
acting as a constraint which gives an algebraic relationship between the T,.‘s and 
the xis and h,‘s. If each Tj can be solved for explicitly in terms of the xf)s and 
Xls, they can be eliminated in Eqs. (29) and (30) to yield the type of boundary 
value problem which was treated previously and shown to be reducible to a 
regression problem. If this is not possible, the situation is somewhat complicated 
by the fact that at each integration step, the Runge-Kutta method evaluates the 
right-hand sides of Eqs. (29) and (30) for several increments of the xi’s and Ai’s. 
In order to compute the corresponding values of the Tis, the nonlinear set of 
algebraic equations given by Eq. (31) must be solved. Since this has to be done 
several times for each step, such a procedure would be quite time consuming. 
However, this problem can be overcome by expanding Eq. (31) about the values 
of the Tj’s for the previous step and retaining only the linear terms in the Tj’S. 
Such an approximation should be adequate since it is not expected that the T;s 
would change greatly over each step. This linear system can then be solved ana- 
lytically to give explicit expressions of the Tj’S. 

One finds application of this type of problem to the determination of the optimal 
temperature distribution in a reaction system [14]. Equation (29) would represent 
the reaction mechanism while Y in Eq. (28) could be the amount of an inter- 
mediate product to be maximized. By including boundary conditions at 1 = 0 
and 1 = L, the design of tubular reactors with or without axial dispersion can be 
considered. The authors have applied this calculational method to the problem 
of optimal temperature policies for enzymatic reactors subject to catalyst deacti- 
vation [7]. 

58x/18/3-8 
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ESTIMATION OF UNCERTAINTIES IN THE PARAMETERS 

It is possible to estimate the uncertainties in the parameters following 
Bevington [2]. The general comments given in [8] are also of interest. Each para- 
meter kh can be considered as a function of the data points Y,“(T& = Y,: which are 
random variables so that the kh’s are also random variables. 

k,, = F,(Yf, v..., Y;N,>. (32) 

Expanding Eq. (32) about the expected values of the YE’s and retaining terms no 
higher than first order gives 

(33) 

where the bar denotes and expected value. It is assumed that the expected value of 
k, is approximately equal to Fh ( Fij . Then 

(kh - k&h - k) 

Operating on Eq. (34) with the expectation 

Nk, - bJ(kr - J&N 

= CoV(kh, kr) = Ng” NF (+$)r,l (+), cov(Yg ) Y&). (35) 
i,j 77l.n 23 mn n&n 

Since it is not expected that there is a correlation between the measurement errors 
of any two different data points, the covariance of any two different points is zero 
while that for the same point is the variance Var(Y$. Thus, in Eq. (35) only the 
terms in which i, j equals m, n are nonzero, and Eq. 35 becomes 

coV(kh , k,) = g *$I (+)( &) Va@‘$. II 
For the case where h = r, one obtains 

var(kd = g i$ (-$)2 var(Y~. 13 

(36) 

(37) 
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In order to evaluate Fh , Eq. (11) is used in matrix form 

jl=Aka’ 
and is solved for Ak: 

Ak = p(d)-l = (BE’, 

where E’ is the inverse of 01’ or 

kh = h” -+ 5 PA, 
I=1 

(38) 

where E’ is inverse matrix of 01’. 
For convenience, /31 and ah2 are written in the following form, with Wii= I/var( Yz$). 

where 

Since 

then 

aF, M aPl 
M 

-= E=l ay! ‘h= C 
1 

ar; c- ~ xil(Ti) eil * 
92 E=l var( Yg> 

Substituting Eq. (39) into (36) gives 

cov(kh 7 kr) = j$ fl & 5 EhlE7mXiE(7i) xim(Tj) 
El l,WZ=l 

= 
if 

2,?7Z=l 

(3% 

= .fl %m8hm = %h = Ehr I (40) 
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where ah,,& is the Kronecker delta. Also 

var(k,) = E~~ . (41) 

Thus, the variance of the parameters is given by the diagonal terms of the inverse 
matrix of a while the other terms give the covariance of any two parameters. 
For this reason, the system of simultaneous linear equations as given by Eq. (11) 
is solved by matrix inversion. 

The significance of the variance is well known in that it gives a measure of the 
possible error in the parameters; however, that of the covariance requires some 
explanation. By using the correlation coefficient defined as 

?+<j = [COV(ki , kj)]/[Var(ki) Var(kj)]‘/‘, (42) 

where rii = 1, information can be obtained regarding whether a given parameter 
belongs in the model. The value of rii ranges from zero when there is no correlation 
to & 1 when there is complete linear correlation. Since according to Eq. (1 I), 
each iteration attempts to fit the data to a linear function of the parameters, each 
correlation coefficient should ideally be unity if all the parameters belong in the 
model; however, in practice, values less than unity are obtained so that the corre- 
lation coefficient cannot be used directly. 

Nevertheless, an indication of the degree of correlation between any two param- 
eters can be obtained by comparing the probability distribution of ki and kj 
with one in which ki and kj are uncorrelated or rij = 0. Such a distribution is a 
two-dimensional normal distribution in ki and ki . Tables are available which give 
the probability that a random sample with v degrees of freedom obtained from an 
uncorrelated population yields a value of 1 rij ) as large or larger than some given 
value of rij [2]. Using the calculated values of rij and v = ZVN, - M, one obtains 
the probability that the observed value of rii could have been obtained from a 
population in which ki and kj are uncorrelated. A small value of this probability 
implies that ki and kj are correlated and belong in the model. 

In order to characterize the overall goodness of fit of the model to the data, the 
chi-square test may be used [2]. This is justified if the covariance of any two data 
points is zero, which as indicated before is a reasonable assumption. The reduced 
chi-square statistic xV2 is defined as 

(43) 

where v = NN, - M and Yij is the value as predicted from the model. The 
variance of the data a2 is 
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and an estimate of the variance of the fit S2 is 

Thus, 
X. * = s*/a*. (46) 

Since S2 depends on the accuracy of both the data and the fit while u* depends 
only on that of the data, xv2 should be near unity if the model is appropriate. 
The probability distribution of xy2 is tabulated and gives the probability that the 
correct model would yield a value of xy2 as large or larger than the calculated 
value. Since xZ2 = 1 gives a probability of 0.5, the model is appropriate if this 
probability is near 0.5. 

In cases where the uncertainties in the data are not known or cannot be estimated, 
they can be approximated from 

(47) 

which is S* or xy2 with all the var( YZ$‘s set equal. From Eqs. (40) and (41) it is seen 
that 

cov(k, , k,) cz S2E,,[var(Y$ = I], 

var(k,) E S*E,,[var( YE) = I], 

(48) 

(49) 

where r,,[var(Y$ = l] is the inverse matrix of 01 evaluated with var(YE) = 1. 
It should be noted that xy2 has no meaning in this case since it is identically unity. 

The authors have utilized these statistical calculations as an aid in the deter- 
mination of chemical reaction mechanisms from experimental concentration data. 
The correct mechanism is characterized by (1) a value of xy2 near unity, (2) standard 
deviations of the regressed rate constants smaller than the constants themselves, 
and (3) correlation coefficients which give probabilities that all the rate constants 
belong in the mechanism. For an incorrect mechanism, one can deduce from the 
statistical analysis what portions of the mechanism are in error and need improve- 
ment. Cases have also been solved where data are not available for every species 
in the mechanism. 

COMPUTER PROGRAM 

A computer program whose flow chart is shown in Fig. 1 was prepared in 
FORTRAN to carry out the operations previously described. It can be constructed 
easily by combining available library subroutines. The differential equations are 
integrated by means of an IBM subroutine which uses Gill’s modification of the 
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Runge-Kutta method. A convenient feature of this routine is that it changes the 
step size as it proceeds so that neither too large nor too small a step size is used in 
order to assure an accurate and as rapid a solution as possible. This subroutine 
was also modified to perform simultaneously the integration required to evaluate 
the a YJWs. The iterative process of improving the initial guess of the parameters 
according to Marquardt’s algorithm was carried out by modifying a set of sub- 
routines given by Bevington [2] which makes a least-squares fit to a nonlinear 
function and performs a statistical analysis of the regreasion. The total program 
is implemented by a driver routine which reads in the initial conditions, the initial 
guess of the parameters, and the data to be fitted as well as produces the resulting 
output in both tabular and graphical form and by a subroutine which lists the 
set of differential equations. 

The program is quite efficient in that it has never required a computation time 
greater than one minute on a UNIVAC 1108. It has run for cases where the initial 
guesses were off by as much as a factor of 100 and up to eight parameters and 
fifteen equations. 

Read in set 
of differential w’s, 

initial conditions, 
0 guess of the 

parameters, data,A 

1 

Increase Integrate differential 
A and “se 
previous 

equations and 

estimates _~_e 
compute 

8Yi 
* 

Sk 

I 

Solve simultaneous 
linear algebraic cq’r 
by matrix inversion 
to obtain new values 

Of parameters 

\ 
Print solution 
and statistics I 

FIG. 1. Flow chart for computer program. 
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